3.237 \(\int \frac {x^2 (a+b \sin ^{-1}(c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=206 \[ -\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}+\frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt {d-c^2 d x^2}}+\frac {b^2 x \sqrt {d-c^2 d x^2}}{4 c^2 d}-\frac {b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{4 c^3 \sqrt {d-c^2 d x^2}} \]

[Out]

-1/4*b^2*arcsin(c*x)*(-c^2*x^2+1)^(1/2)/c^3/(-c^2*d*x^2+d)^(1/2)+1/2*b*x^2*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2
)/c/(-c^2*d*x^2+d)^(1/2)+1/6*(a+b*arcsin(c*x))^3*(-c^2*x^2+1)^(1/2)/b/c^3/(-c^2*d*x^2+d)^(1/2)+1/4*b^2*x*(-c^2
*d*x^2+d)^(1/2)/c^2/d-1/2*x*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/c^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 213, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {4707, 4643, 4641, 4627, 321, 216} \[ \frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}+\frac {b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt {d-c^2 d x^2}}-\frac {b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{4 c^3 \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(b^2*x*(1 - c^2*x^2))/(4*c^2*Sqrt[d - c^2*d*x^2]) - (b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(4*c^3*Sqrt[d - c^2*d*
x^2]) + (b*x^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(2*c*Sqrt[d - c^2*d*x^2]) - (x*Sqrt[d - c^2*d*x^2]*(a +
b*ArcSin[c*x])^2)/(2*c^2*d) + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c^3*Sqrt[d - c^2*d*x^2])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4643

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 - c^2*x^2]/Sq
rt[d + e*x^2], Int[(a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*
d + e, 0] &&  !GtQ[d, 0]

Rule 4707

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(e*m), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m
 - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Dist[(b*f*n*Sqrt[1 - c^2*x^2])/(c*m*Sqrt[d + e*x^2]), I
nt[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] &&
GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx &=-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {\int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx}{2 c^2}+\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}-\frac {\left (b^2 \sqrt {1-c^2 x^2}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {d-c^2 d x^2}}+\frac {\sqrt {1-c^2 x^2} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{2 c^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt {d-c^2 d x^2}}+\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt {d-c^2 d x^2}}-\frac {\left (b^2 \sqrt {1-c^2 x^2}\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{4 c^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt {d-c^2 d x^2}}-\frac {b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{4 c^3 \sqrt {d-c^2 d x^2}}+\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.34, size = 210, normalized size = 1.02 \[ \frac {12 a^2 c d x \left (c^2 x^2-1\right )-12 a^2 \sqrt {d} \sqrt {d-c^2 d x^2} \tan ^{-1}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (c^2 x^2-1\right )}\right )-6 a b d \sqrt {1-c^2 x^2} \left (-2 \sin ^{-1}(c x)^2+2 \sin \left (2 \sin ^{-1}(c x)\right ) \sin ^{-1}(c x)+\cos \left (2 \sin ^{-1}(c x)\right )\right )+b^2 d \sqrt {1-c^2 x^2} \left (4 \sin ^{-1}(c x)^3+\left (3-6 \sin ^{-1}(c x)^2\right ) \sin \left (2 \sin ^{-1}(c x)\right )-6 \sin ^{-1}(c x) \cos \left (2 \sin ^{-1}(c x)\right )\right )}{24 c^3 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(12*a^2*c*d*x*(-1 + c^2*x^2) - 12*a^2*Sqrt[d]*Sqrt[d - c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-
1 + c^2*x^2))] - 6*a*b*d*Sqrt[1 - c^2*x^2]*(-2*ArcSin[c*x]^2 + Cos[2*ArcSin[c*x]] + 2*ArcSin[c*x]*Sin[2*ArcSin
[c*x]]) + b^2*d*Sqrt[1 - c^2*x^2]*(4*ArcSin[c*x]^3 - 6*ArcSin[c*x]*Cos[2*ArcSin[c*x]] + (3 - 6*ArcSin[c*x]^2)*
Sin[2*ArcSin[c*x]]))/(24*c^3*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (b^{2} x^{2} \arcsin \left (c x\right )^{2} + 2 \, a b x^{2} \arcsin \left (c x\right ) + a^{2} x^{2}\right )} \sqrt {-c^{2} d x^{2} + d}}{c^{2} d x^{2} - d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*x^2*arcsin(c*x)^2 + 2*a*b*x^2*arcsin(c*x) + a^2*x^2)*sqrt(-c^2*d*x^2 + d)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{2}}{\sqrt {-c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^2/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

maple [B]  time = 0.43, size = 604, normalized size = 2.93 \[ -\frac {a^{2} x \sqrt {-c^{2} d \,x^{2}+d}}{2 c^{2} d}+\frac {a^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{2} \sqrt {c^{2} d}}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3}}{6 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, x \arcsin \left (c x \right )^{2}}{8 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, x}{16 c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (3 \arcsin \left (c x \right )\right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sin \left (3 \arcsin \left (c x \right )\right ) \arcsin \left (c x \right )^{2}}{8 c^{3} d \left (c^{2} x^{2}-1\right )}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sin \left (3 \arcsin \left (c x \right )\right )}{16 c^{3} d \left (c^{2} x^{2}-1\right )}-\frac {a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{2 c^{3} d \left (c^{2} x^{2}-1\right )}-\frac {a b \sqrt {-c^{2} x^{2}+1}}{8 c^{3} \sqrt {-d \left (c^{2} x^{2}-1\right )}}+\frac {a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x}{4 c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \cos \left (3 \arcsin \left (c x \right )\right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{4 c^{3} d \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-1/2*a^2*x/c^2/d*(-c^2*d*x^2+d)^(1/2)+1/2*a^2/c^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1
/6*b^2*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)^3+1/8*b^2*(-d*(c^2*x^2-1))^(1/2
)*(-c^2*x^2+1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)+1/8*b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*x*arcsin(c
*x)^2-1/16*b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*x+1/8*b^2*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*arc
sin(c*x)*cos(3*arcsin(c*x))+1/8*b^2*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*sin(3*arcsin(c*x))*arcsin(c*x)^2-
1/16*b^2*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*sin(3*arcsin(c*x))-1/2*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+
1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)^2-1/8*a*b/c^3/(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)+1/4*a*b*(-d*(c^
2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*arcsin(c*x)*x+1/8*a*b*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*cos(3*arcsin(
c*x))+1/4*a*b*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)*sin(3*arcsin(c*x))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{2} \, a^{2} {\left (\frac {\sqrt {-c^{2} d x^{2} + d} x}{c^{2} d} - \frac {\arcsin \left (c x\right )}{c^{3} \sqrt {d}}\right )} - \sqrt {d} \int \frac {{\left (b^{2} x^{2} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} + 2 \, a b x^{2} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )\right )} \sqrt {c x + 1} \sqrt {-c x + 1}}{c^{2} d x^{2} - d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/2*a^2*(sqrt(-c^2*d*x^2 + d)*x/(c^2*d) - arcsin(c*x)/(c^3*sqrt(d))) - sqrt(d)*integrate((b^2*x^2*arctan2(c*x
, sqrt(c*x + 1)*sqrt(-c*x + 1))^2 + 2*a*b*x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-
c*x + 1)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^2\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x^2*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*asin(c*x))**2/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________